数学:1.3.3《奇偶性与单调性》学案(1)(新人教A版必修1)
数学:1.3.3《奇偶性与单调性》学案(1)(新人教A版必修1)第3页

  二、填空题

  3.(★★★★)函数f(x)在R上为增函数,则y=f(|x+1|)的一个单调递减区间是_________.

  4.(★★★★★)若函数f(x)=ax3+bx2+cx+d满足f(0)=f(x1)=f(x2)=0 (0

  三、解答题

  5.(★★★★)已知函数f(x)=ax+ (a>1).

  (1)证明:函数f(x)在(-1,+∞)上为增函数.

  (2)用反证法证明方程f(x)=0没有负数根.

  6.(★★★★★)求证函数f(x)=在区间(1,+∞)上是减函数.

  7.(★★★★)设函数f(x)的定义域关于原点对称且满足:(i)f(x1-x2)=;

(ii)存在正常数a使f(a)=1.求证:

  (1)f(x)是奇函数.

  (2)f(x)是周期函数,且有一个周期是4a.

  8.(★★★★★)已知函数f(x)的定义域为R,且对m、n∈R,恒有f(m+n)=f(m)+f(n)-1,且

f(-)=0,当x>-时,f(x)>0.

  (1)求证:f(x)是单调递增函数;

  (2)试举出具有这种性质的一个函数,并加以验证.