2019-2020学年人教A版必修三 3.3.2 均匀随机数的产生 教案
2019-2020学年人教A版必修三   3.3.2 均匀随机数的产生  教案第2页

(2)对于一个随机试验,我们将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中的每一个点被取到的机会都一样,而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点.这里的区域可以是线段、平面图形、立体图形等.用这种方法处理随机试验,称为几何概型.

几何概型的基本特点:

a.试验中所有可能出现的结果(基本事件)有无限多个;

b.每个基本事件出现的可能性相等.

几何概型的概率公式:P(A)=.

(3)我们可以用计算机或计算器模拟试验产生整数值随机数来近似地得到所求事件的概率,对于几何概型应当也可.

(4)我们常用的是[0,1]上的均匀随机数.可以利用计算器来产生0-1之间的均匀随机数(实数),方法如下:

试验的结果是区间[0,1]内的任何一个实数,而且出现任何一个实数是等可能的,因此,就可以用上面的方法产生的0-1之间的均匀随机数进行随机模拟.

(5)a.选定A1格,键入"=RAND()",按Enter键,则在此格中的数是随机产生的[0,1]之间的均匀随机数.

b.选定A1格,按Ctrl+C快捷键,选定A2-A50,B1-B50,按Ctrl+V快捷键,则在A2-A50, B1-B50的数均为[0,1]之间的均匀随机数.

(6)[a,b]上均匀随机数的产生:

利用计算器或计算机产生[0,1]上的均匀随机数X=RAND,

然后利用伸缩和平移变换,X=X*(b-a)+a就可以得到[a,b]上的均匀随机数,试验结果是[a,b]内任何一实数,并且是等可能的.

这样我们就可以通过计算机或计算器产生的均匀随机数,用随机模拟的方法估计事件的概率.

三、例题讲解:

例1 假设你家订了一份报纸,送报人可能在早上6:30-7:30之间把报纸送到你家,你父亲离开家去工作的时间在早上7:00-8:00之间,问你父亲在离开家前能得到报纸(称为事件A)的概率是多少?

活动:用计算机产生随机数模拟试验,我们可以利用计算机产生0-1之间的均匀随机数,利用计算机产生B是0-1的均匀随机数,则送报人送报到家的时间为B+6.5,利用计算机产生A是0-1的均匀随机数,则父亲离家的时间为A+7,如果A+7>B+6.5,即A>B-0.5时,事件E={父亲离家前能得到报纸}发生.也可用几何概率的计算公式计算.

解法一:1.选定A1格,键入"=RAND()",按Enter键,则在此格中的数是随机产生的[0,1]之间的均匀随机数.

2.选定A1格,按Ctrl+C快捷键,选定A2-A50,B1-B50,按Ctrl+V快捷键,则在A2-A50,B1-B50的数均为[0,1]之间的均匀随机数.用A列的数加7表示父亲离开家的时间,B列的数加6.5表示报纸到达的时间.这样我们相当于做了50次随机试验.