1.课题:椭圆的第二定义
学法指导:以问题为诱导,结合图形,引导学生进行必要的联想、类比、化归、转化.
教学目标
知识目标:椭圆第二定义、准线方程;
能力目标:1使学生了解椭圆第二定义给出的背景;
2了解离心率的几何意义;
3使学生理解椭圆第二定义、椭圆的准线定义;
4使学生掌握椭圆的准线方程以及准线方程的应用;
5使学生掌握椭圆第二定义的简单应用;
情感与态度目标:通过问题的引入和变式,激发学生学习的兴趣,应用运动变化的观点看待问题,体现数学的美学价值.
教学重点:椭圆第二定义、焦半径公式、准线方程;
教学难点:椭圆的第二定义的运用;
教学方法:创设问题、启发引导、探究活动、归纳总结.
教学过程
复习回顾
1.椭圆的长轴长为 18 ,短轴长为 6 ,半焦距为,离心率为,焦点坐标为,顶点坐标为,(准线方程为).
2.短轴长为8,离心率为的椭圆两焦点分别为、,过点作直线交椭圆于A、B两点,则的周长为 20 .
引入课题
【习题4(教材P50例6)】椭圆的方程为,M1,M2为椭圆上的点
① 求点M1(4,2.4)到焦点F(3,0)的距离 2.6 .
② 若点M2为(4,y0)不求出点M2的纵坐标,你能求出这点到焦点F(3,0)的距离吗?
解:且代入消去得
【推广】你能否将椭圆上任一点到焦点的距离表示