指明回答:表示把一个蛋糕平均分成9份,每人吃其中的2份。
(2)求"3人一共吃多少个?"实际上就是求什么?
先让学生思考,再指名回答。
(实际上就是求3个是多少。)
2.学生独立列加法算式解答。
++==(个)
3.根据乘法的意义将加法算式转换成乘法算式。
(1)提问:这道加法算式有什么特点?(三个加数都相同。)
(2)追问:求几个相同加数的和还可以用什么方法来计算呢?
(启发学生得出:3个相加,用乘法表示是×3或3×。)
4.探究分数乘整数的计算方法。
(1)提问:3个相加的和,也可以列成算式×3,那么×3又应该怎样计算呢?
(2)学生思考计算方法。
学生思考,教师巡视观察。如果学生有困难,可以进行必要的启发:是2个,2个乘3就是6个,所以就是。
(3)组织全班交流,教师结合学生的回报情况进行板书:
×3=++====(个)
教师强调:在计算过程中,虚线框起来的思考过程可以不写;分数线要用直尺画。
(4)学习计算过程中进行约分。
引导学生观察计算过程中的分子和分母,分子用"2×3"得来,说明分子中含有因数3,而分母是"9",也含有因数3,所以将"3"和"9"进行约分,即:
×3==(个)
观察上面的计算过程,你发现了什么?
(预设:能约分的可以先约分,再计算,结果相同。)
(5)提问:如果把算式"×3"的两个因数交换位置,变成"3×",又应该