2019-2020学年北师大版选修2-2 函数的极值与导数 学案
2019-2020学年北师大版选修2-2     函数的极值与导数     学案第1页

2019-2020学年北师大版选修2-2 函数的极值与导数 学案

1.极值点与极值

(1)极小值点与极小值

如图,函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0;而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,则把点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.

(2)极大值点与极大值

如图,函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0;而且在点x=b的左侧f′(x)>0,右侧f′(x)<0,则把点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.

(3)极大值点、极小值点统称为极值点,极大值和极小值统称为极值.

2.求函数y=f(x)的极值的方法

解方程f′(x)=0,当f′(x0)=0时:

(1)如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值.

(2)如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是极小值.

情境导学]

在必修1中,我们研究了函数在定义域内的最大值与最小值问题.但函数在定义域内某一点附近,也存在着哪一点的函数值大,哪一点的函数值小的问题,如何利用导数的知识来判断函数在某点附近函数值的大小问题?又如何求出这些值?这就是本节我们要研究的主要内容.

探究点一 函数的极值与导数的关系

思考1 如图观察,函数y=f(x)在d、e、f、g、h、i等点处的函数值与这些点附近的函数值有什么关系?y=f(x)在这些点处的导数值是多少?在这些点附近,y=f(x)的导数的符号有什么规律?

答 以d、e两点为例,函数y=f(x)在点x=d处的函数值f(d)比它在点x=d附近其他点的函数值都小,f′(d)=0;在x=d的附近的左侧f′(x)<0,右侧f′(x)>0.类似地,函数y=f(x)在点x=e处的函数值f(e)比它在x=e附近其他点的函数值都大,f′(e)=0;在x