答案:(1)× (2)× (3)√ (4)√
已知向量a=(4,-2,-4),b=(6,-3,2),则下列结论正确的是( )
A.a+b=(10,-5,-6) B.a-b=(2,-1,-6)
C.a·b=10 D.|a|=6
答案:D
与向量m=(0,1,-2)共线的向量是( )
A.(2,0,-4) B.(3,6,-12)
C.(1,1,-2) D.
答案:D
已知a=(2,1,3),b=(-4,5,x),若a⊥b,则x=________.
答案:1
已知A点的坐标是(-1,-2,6),B点的坐标是(1,2,-6),O为坐标原点,则向量\s\up6(→(→)与\s\up6(→(→)的夹角是________.
答案:π
探究点1 空间向量的坐标运算[学生用书P61]
(1)已知a=(2,-1,-2),b=(0,-1,4),求a+b,a-b,a·b,(2a)·(-b),(a+b)·(a-b);
(2)已知O是坐标原点,且A,B,C三点的坐标分别是(2,-1,2),(4,5,-1),(-2,2,3),求适合下列条件的点P的坐标:
①\s\up6(→(→)=(\s\up6(→(→)-\s\up6(→(→));②\s\up6(→(→)=(\s\up6(→(→)-\s\up6(→(→)).
【解】 (1)a+b=(2,-1,-2)+(0,-1,4)=(2+0,-1-1,-2+4)=(2,-2,2);
a-b=(2,-1,-2)-(0,-1,4)=(2-0,-1+1,-2-4)=(2,0,-6);
a·b=(2,-1,-2)·(0,-1,4)=2×0+(-1)×(-1)+(-2)×4=-7;
(2a)·(-b)=-2(a·b)=-2×(-7)=14;
(a+b)·(a-b)=(2,-2,2)·(2,0,-6)=2×2-2×0+2×(-6)=-8.
(2)由题意知,\s\up6(→(→)=(2,6,-3),\s\up6(→(→)=(-4,3,1).
①\s\up6(→(→)=(\s\up6(→(→)-\s\up6(→(→))=(6,3,-4)=(3,,-2),则点P的坐标为(3,,-2).