2010届高三数学二轮复习学案:立体几何知识点归纳
2010届高三数学二轮复习学案:立体几何知识点归纳第2页

  ⑥如果一条直线和两个相交平面都平行,那么这条直线与这两个平面的交线平行,即若α∩β=b,a∥α,a∥β,则a∥b.

  (2)两直线垂直的判定

  ①定义:若两直线成90°角,则这两直线互相垂直.

  ②一条直线与两条平行直线中的一条垂直,也必与另一条垂直.即若b∥c,a⊥b,则a⊥c

  ③一条直线垂直于一个平面,则垂直于这个平面内的任意一条直线.即若a⊥α,bα,a⊥b.

  ④三垂线定理和它的逆定理:在平面内的一条直线,若和这个平面的一条斜线的射影垂直,则它也和这条斜线垂直.

  ⑤如果一条直线与一个平面平行,那么这条直线与这个平面的垂线垂直.即若a∥α,b⊥α,则a⊥b.

  ⑥三个两两垂直的平面的交线两两垂直,即若α⊥β,β⊥γ,γ⊥α,且α∩β=a,β∩γ=b,γ∩α=c,则a⊥b,b⊥c,c⊥a.

  (3)直线与平面平行的判定

  ①定义:若一条直线和平面没有公共点,则这直线与这个平面平行.

  ②如果平面外一条直线和这个平面内的一条直线平行,则这条直线与这个平面平行.即若aα,bα,a∥b,则a∥α.

  ③两个平面平行,其中一个平面内的直线平行于另一个平面,即若α∥β,lα,则l∥β.

  ④如果一个平面和平面外的一条直线都垂直于同一平面,那么这条直线和这个平面平行.即若α⊥β,l⊥β,lα,则l∥α.

  ⑤在一个平面同侧的两个点,如果它们与这个平面的距离相等,那么过这两个点的直线与这个平面平行,即若Aα,Bα,A、B在α同侧,且A、B到α等距,则AB∥α.

  ⑥两个平行平面外的一条直线与其中一个平面平行,也与另一个平面平行,即若α∥β,aα,aβ,a∥α,则α∥β.

  ⑦如果一条直线与一个平面垂直,则平面外与这条直线垂直的直线与该平面平行,即若a⊥α,bα,b⊥a,则b∥α.

  ⑧如果两条平行直线中的一条平行于一个平面,那么另一条也平行于这个平面(或在这个平面内),即若a∥b,a∥α,b∥α(或bα)

  (4)直线与平面垂直的判定

  ①定义:若一条直线和一个平面内的任何一条直线垂直,则这条直线和这个平面垂直.

  ②如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面.即若mα,nα,m∩n=B,l⊥m,l⊥n,则l⊥α.

③如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于同一平面.即若l∥a,a⊥α,则l⊥α.