所以,因而,于是是直角三角形,故.
所以异面直线与所成的角的大小为.
(Ⅲ)解:过点P做于H,过点H做于E,连结PE
因为平面,平面,所以.又,
因而平面,故HE为PE再平面ABCD内的射影.由三垂线定理可知,
,从而是二面角的平面角。
由题设可得,
于是再中,
所以二面角的大小为.
★★★高考考什么
【考点透视】
异面直线所成角,直线与平面所成角,求二面角每年必考,作为解答题可能性最大.
【热点透析】
1.转化思想:
①
② 将异面直线所成的角,直线与平面所成的角转化为平面角,然后解三角形
2.求角的三个步骤:一猜,二证,三算.猜是关键,在作线面角时,利用空间图形的平行,垂直,对称关系,猜斜线上一点或斜线本身的射影一定落在平面的某个地方,然后再证
3.二面角的平面角的主要作法:①定义 ②三垂线定义 ③ 垂面法
距离
【考点透视】
判断线线、线面、面面的平行与垂直,求点到平面的距离及多面体的体积。
【热点透析】
转化思想:
① ;
② 异面直线间的距离转化为平行线面之间的距离,
平行线面、平行面面之间的距离转化为点与面的距离。
2.空间距离则主要是求点到面的距离主要方法:
①体积法; ②直接法,找出点在平面内的射影
★★★高考将考什么