故第1次取出的2个球1个是白球、1个是红球,第2次取出的2个球都是白球的概率是.
2.某同学参加科普知识竞赛,需回答三个问题.竞赛规则规定:答对第一、二、三个问题分别得100分、100分、200分,答错得零分.假设这名同学答对第一、二、三个问题的概率分别为0.8,0.7,0.6,且各题答对与否相互之间没有影响.
(1)求这名同学得300分的概率;
(2)求这名同学至少得300分的概率.
解:记"这名同学答对第i个问题"为事件Ai(i=1,2,3),则P(A1)=0.8,P(A2)=0.7,P(A3)=0.6.
(1)这名同学得300分的概率
P1=P(A12A3)+P(1A2A3)
=P(A1)P(2)P(A3)+P(1)P(A2)P(A3)
=0.8×0.3×0.6+0.2×0.7×0.6=0.228.
(2)这名同学至少得300分的概率P2=P1+P(A1A2A3)=0.228+0.8×0.7×0.6=0.564.
相互独立性事件概率的应用 [例3] 某田径队有三名短跑运动员,根据平时训练情况统计甲、乙、丙三人100米跑(互不影响)的成绩在13 s内(称为合格)的概率分别为,,,若对这三名短跑运动员的100 m 跑的成绩进行一次检测,则
(1)三人都合格的概率;
(2)三人都不合格的概率;
(3)出现几人合格的概率最大.
[解] 记"甲、乙、丙三人100米跑成绩合格"分别为事件A,B,C,显然事件A,B,C相互独立,
则P(A)=,P(B)=,P(C)=.
设恰有k人合格的概率为Pk(k=0,1,2,3)
(1)三人都合格的概率:P3=P(A∩B∩C)=P(A)P(B)P(C)=××=.
(2)三人都不合格的概率:P0=P(\s\up6(-(-)∩\s\up6(-(-)∩\s\up6(-(-))=P(\s\up6(-(-))P(\s\up6(-(-))P(\s\up6(-(-))=××=.
(3)恰有两人合格的概率:
P2=P(A∩B∩\s\up6(-(-))+P(A∩\s\up6(-(-)∩C)+P(\s\up6(-(-)∩B∩C)