那这两个算式分别表示什么意义?(第一个是上午和下午的路程和是多少?第二个是下午和上午的路程和是多少?得数是一样的。)
我们可以把这两个算式用什么符号连接起来呢?(等号)
观察每组算式等号两边有什么相同点和不同点?(数没变,符号没有变,只是加数位置发生了变化。)
是不是任意两个数相加,交换位置和都不变呢?这只是我们的猜想,还需要我们来验证,先请同桌之间相互举例。哪些同学能写出像上面一样的算式来呢?
(例如:8+6=6+8等等)。这个式子也是等式吗?数不变位置发生变化不影响计算结果。
观察这几个算式,把你观察到的可以用文字来描述一下吗?(两个数相加交换位置和不变。)
我们给这条规律起了个名字叫加法交换律,把加数换成其他任意数,交换律还成立吗?(成立)
请你与同桌交流一下,用自己喜欢方式表示加法交换律。鼓励学生用不同的方式表示。(○+△=△+○)
通常我们数学上可以用字母表示数。今天我们就选字母a和b来表示两个加数。a表示第一个加数,b表示第二个加数。用字母就可以表示成:a+b=b+a
用文字表示和用字母表示你们觉得哪种更一目了然,更简洁?(用字母更简洁)。
等式左边的a和b就是等式右边的b和a,也就是数没有发生变化。刚才我们的猜想验证了加法交换律,现在用这个规律来解决实际问题。
阶段练习:返回课前复习,让学生观察左右两排得数,并把相同得数的用线连起来。