sin A=√(1"-" cos ^2 A)=√(1"-(" 4/5 ")" ^2 )=3/5.
所以tan A=sinA/cosA=3/5×5/4=3/4.又tan B=2,
所以tan(A+B)=(tanA+tanB)/(1"-" tanAtanB)=(3/4+2)/(1"-" 3/4×2)=-11/2,
于是tan(2A+2B)=tan[2(A+B)]=(2tan"(" A+B")" )/(1"-" tan ^2 "(" A+B")" )=(2×"(-" 11/2 ")" )/(1"-(-" 11/2 ")" ^2 )=44/117.
四、变式演练,深化提高
1.解:原式=√("(" sin15"°" +cos15"°" ")" ^2 )=√(sin ^2 15"°" +2sin15"°" cos15"°" +cos ^2 15"°" )=√6/2.
2.解:原式=cos 80°cos 60°cos 40°cos 20°=(2^3 "·" sin20"°" cos20"°" cos40"°" cos80"°" )/(2^3 "·" 2sin20"°" )
=sin160"°" /16sin20"°" =sin20"°" /16sin20"°" =1/16.
3.解:(1)由cos α=1/7,0<α<π/2,得sin α=√(1"-" cos ^2 α)=√(1"-(" 1/7 ")" ^2 )=(4√3)/7.
∴tan α=sinα/cosα=(4√3)/7×7/1=4√3.于是tan 2α=2tanα/(1"-" tan ^2 α)=(2×4√3)/(1"-(" 4√3 ")" ^2 )=-(8√3)/47.