例(6)解:由题m2+2m-3=5且|m+1|=3解之 m=-4或m=2
例(7)解:将x=1、2、3、4代入x2-5x+m=0中,m=4或m=6
当m=4时,x2-5x+4=0,即A={1,4}
又当m=6时,x2-5x+6=0,即A={2,3}
故满足题条件:UA={1,4},m=4;UB={2,3},m=6.
评述:此题解决过程中渗透分类讨论思想.
2.P14练习题1、2、3、4、5
一、 回顾反思
本节主要介绍全集与补集,是在子集概念的基础上讲述补集的概念,并介绍了全集的概念
1.全集是一个相对的概念,它含有与研究的问题有关的各个集合的全部元素,通常用"U"表示全集.在研究不同问题时,全集也不一定相同.
2.补集也是一个相对的概念,若集合A是集合S的子集,则S中所有不属于A的元素组成的集合称为S中子集A的补集(余集),记作,即={x|}. 当S不同时,集合A的补集也不同.
二、 作业布置
1、 P15习题4,5
2、 用集合A,B,C的交集、并集、补集表示下图有色部分所代表的集合
3、思考:p15 B组题1,2