(2)求变速直线运动的(位移)路程
如果物体做变速直线运动,速度函数v=v(t),那么也可以采用分割,近似代替,求和,取极限的方法,求出它在a≤t≤b内所作的位移s.
2.定积分的概念
如果函数f(x)在区间[a,b]上连续,用分点a=x0<x1<...<xi-1<xi<...<xn=b将区间[a,b]等分成n个小区间,在每个小区间[xi-1,xi]上任取一点ξi(i=1,2,...,n)作和式ni=1f(ξi)Δx=ni=1 f(ξi),当n→∞时,上述和式无限接近某个常数,这个常数叫做函数f(x)在区间[a,b]上的定积分,记作f(x)dx,即f(x)dx=lim,\s\do8(n→∞∑,\s\up8(n.其中a与b分别叫做积分下限与积分上限,区间[a,b]叫做积分区间,函数f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式.
思考:f(x)dx是一个常数还是一个变量?f(x)dx与积分变量有关系吗?
[提示]由定义可得定积分f(x)dx是一个常数,它的值仅取决于被积函数与积分上、下限,而与积分变量没有关系,即f(x)dx=f(t)dt=f(u)du.
3.定积分的几何意义与性质
(1)定积分的几何意义
由直线x=a,x=b(a<b),x轴及一条曲线y=f(x)所围成的曲边梯形的面积设为S,则有:
① ② ③
图152
①在区间[a,b]上,若f(x)≥0,则S=f(x)dx,如图152①所示,即f(x)d