2018-2019学年北师大版选修1-2 综合法与分析法分析法证明不等式 学案
2018-2019学年北师大版选修1-2  综合法与分析法分析法证明不等式  学案第2页



  [讲解]综合法证明不等式的逻辑关系:以已知条件中的不等式或基本不等式作为结论,逐步寻找它成立的必要条件,直到必要条件就是要证明的不等式.

  [问题1]我们能不能用同样的思考问题的方式,把要证明的不等式作为结论,逐步去寻找它成立的充分条件呢?

  [问题2]当我们寻找的充分条件已经是成立的不等式时,说明了什么呢?

  [问题3]说明要证明的不等式成立的理由是什么呢?

  [点评]从要证明的结论入手,逆求使它成立的充分条件,直到充分条件显然成立为止,从而得出要证明的结论成立.就是分析法的逻辑关系.

  [投影]分析法证明不等式的概念.(见课本)

  设计意图:对比综合法的逻辑关系,教师层层设置问题,激发学生积极思考、研究.建立新的知识;分析法证明不等式.培养学习创新意识.

  【例题示范、学会应用】

  (教师活动)教师板书或投影例题,引导学生研究问题,构思证题方法,学会用分析法证明不等式,并点评用分析法证明不等式必须注意的问题.

  (学生活动)学生在教师引导下,研究问题,与教师一道完成问题的论证.

  例1 求证

  [分析]此题用比较法和综合法都很难入手,应考虑用分析法.

  证明:(见课本)

  [点评]证明某些含有根式的不等式时,用综合法比较困难.此例中,我们很难想到从" "入手,因此,在不等式的证明中,分析法占有重要的位置,我们常用分析法探索证明途径,然后用综合法的形式写出证明过程,这是解决数学问题的一种重要思维方法,事实上,有些综合法的表述正是建立在分析法思索的基础上,分析法的优越性正体现在此.

  例2 已知: ,求证: (用分析法)请思考下列证法有没有错误?若有错误,错在何处?

  [投影]证法一:因为 ,所以 、去分母,化为 ,就是 .由已知 成立,所以求证的不等式成立.

  证法二:欲证 ,因为