城南小学(四)年级 第(二)学期(数学)学科导学案 教学单元: 第三单元 主备人: 课题(4课时) 乘法分配律 使用人: 教学目标: 1.通过新旧知识的沟通,观察、比较、抽象、概括出乘法分配律;初步理解和掌握它的结构特征;理解并运用乘法分配律进行简算,并能正确计算。
2.能力目标:渗透从特殊到一般,再由一般到特殊这种认识事物的方法。
3.培养学生观察、比较、抽象、概括等能力。培养学生的数感和符号感。 教学重点: 引导学生通过观察、比较、抽象、概括出乘法分配律。 教学难点: 教学难点:应用乘法分配律解决实际问题。 导学设计 一﹑知识回顾
1﹑口答:说说什么是乘法交换律和乘法结合律?请用字母表示出来.
2﹑口算: 40×23×25 125×16
要求学生回答出结果,并口述在口算过程中,使用了什么运算定律?这样计算有什么好处?
二﹑类比感知
1﹑投影出示:
4×(5+8) 8×(4+5) (7+6)×3
4×5+4×8 8×4+8×5 7×3+6×3
2﹑分组讨论:(1)上面各组算式的结果有什么特点?
(2)根据这个特点,每组中的两个算式可以怎样连接起来,用以表示它们的关系?
教师根据学生的回答,进行板书.
3﹑你能举出类似的例子吗?(学生自由回答)
【设计意图:通过让学生讨论举例,让学生初步体会出乘法分配律在形式上与前面学过的乘法的运算定律的不同,对将要学习的乘法分配律先有个初步的认识】
三﹑质疑释疑,研究归纳
1﹑出示主题图,根据图中信息,让学生讨论,你想解决什么问题?
2﹑针对学生提出的问题,可根据情况给予解答.
3﹑提出例3的问题,进行分析和讨论.
4﹑学生独立列式解答.
5﹑集体交流不同算法的解题思路.
方法一: (4+2)×25 方法二: 4×25+2×25
=6×25 =100+50
=150(人) =150(人)
6﹑分析比较:观察两种算法有什么不同?
7﹑建立表象:以上两种算法的结果怎样? (4+2)×25=4×25+2×25
8﹑你还能举出类似的例子吗?(教师可根据学生的回答作适当板书)
9﹑探究规律:
结合以上几个等式,让学生分组讨论:
(1)这些等式的左边是怎样的?右边呢?
(2)结果又怎样?
(3)从以上你发现了什么规律?
如果学生在语言表述上有困难,教师可给予适当的提示.
(4)你能再举出乘法分配律的例子吗?
(5)能用字母表示吗?
(6)抢答:a(b+c)=?
(7)归纳乘法分配律并板书课题: 乘法分配律
四﹑知识巩固
1﹑在( )里填上适当的数.
(23+25)×4=( )×4+( )×4
18×(31+16)=18×( )+18×( )
(25+26)×a=( )×( )+( )×( )
53×a+47×a=( + )×a
48×a+( )×b=( )×(a+b)
25×36+25×64=25×( + )
2﹑连线
(25+24)×5 (25+75)×16
25×16+16×75 a×b+a×c
a×(b+c) a×c+b×c
(a+b)×c 25×5+24×5
五﹑课堂总结
今天我们学习了什么知识?它与乘法的交换律和结合律有什么不同?
六﹑知识拓展
你会算吗?
111×999 999×222+333×334
【设计意图:放手让学生探究,通过学生自主学习,培养他们的成就感,激发他们的学习兴趣】
七﹑作业: 教材38页6﹑7.