学生活动:学生可以采取多种方法得到方程的解,比如可以用尝试的方法取x=1、2、3、4、5等,发现x=8时等号成立,于是x=8是方程的一个解,如此等等.
教师活动:教师引导学生自主探索,多种途径寻找方程的解,在此基础上让学生进行总结:
使一元二次方程等号两边相等的未知数的值叫作一元二次方程的解(又叫作一元二次方程的根).
四、反馈练习
课本P4 练习1,2
补充习题:将方程(x+1)2+(x-2)(x+2)=1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项.
五、课堂小结
1.一元二次方程的概念.
一元二次方程的定义要求的三个条件。要灵活运用定义判断方程是一元二次方程或由一元二次方程来确定一些字母的值及取值范围
2.一元二次方程的一般形式ax2+bx+c=0(a≠0)和二次项、二次项系数,一次项、一次项系数,常数项的概念
3.一元二次方程根的概念以及作用
六、作业