充,既是客观实际的需要,又是数学内部发展的需要.从数的运算和解方程的角度感悟"实数不够用了",从而理解引入虚数的必要性.
2.复数的运算是一种新的规定,它是数学体系建构过程中的重要组成部分.学生通过类比归纳、运算求解,进一步体会在新的数集中,原有的运算及其性质仍然适用,同时解决了某些运算在原来数集中不是总可以实施的矛盾,有利于形成对数学较为完整的认识.
3.在复数运算的教学中,可以类比多项式的运算法则来理解和记忆.应注意避免烦琐的计算与技巧训练.对于有兴趣的学生,可以安排一些引申的内容,如求x3=1的根,介绍代数学基本定理等.
4.复数的几何意义和复数加减法的几何意义,可结合平面解析几何和平面向量中的有关知识来学习,这种数形结合的思想丰富了我们研究问题和解决问题的范围和手段.