在一个数列的前n项和中,可两两结合求解,则称之为并项求和。
形如an=(-1)nf(n)类型,可采用两项合并求解。
例如,Sn=1002-992+982-972+...+22-12=(1002-992)+(982-972)+...+(22-12)=(100+99)+(98+97)+...+(2+1)=5 050。
3.裂项相消法
(1)把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和。
(2)常见的裂项技巧
①=-。
②=。
③=。
④=-。
⑤=。
4.错位相减法
如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求,如等比数列的前n项和公式就是用此法推导的。
1.使用裂项相消法求和时,要注意正负项相消时,消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去