2017-2018学年人教A版选修2-2 导数的计算基本函数推导过程 教案
2017-2018学年人教A版选修2-2   导数的计算基本函数推导过程   教案第1页

基本函数推导过程

这里将列举几个基本的函数的导数以及它们的推导过程:

⒈y=c(c为常数) y'=0

⒉y=x^n y'=nx^(n-1)

3.y=a^x y'=a^xlna

y=e^x y'=e^x

⒋y=logax(a为底数,x为真数) y'=1/x*lna

y=lnx y'=1/x

⒌y=sinx y'=cosx

⒍y=cosx y'=-sinx

⒎y=tanx y'=1/cos^2x

⒏y=cotx y'=-1/sin^2x

⒐y=arcsinx y'=1/√(1-x^2)

⒑y=arccosx y'=-1/√(1-x^2)

⒒y=arctanx y'=1/(1+x^2)

⒓y=arccotx y'=-1/(1+x^2)

⒔y=u^v ==> y'=v' * u^v * lnu + u' * u^(v-1) * v

引用的常用公式:

在推导的过程中有这几个常见的公式需要用到:

⒈y=f[g(x)],y'=f'[g(x)]·g'(x)『f'[g(x)]中g(x)看作整个变量,而g'(x)中把x看作变量』

⒉y=u/v,y'=(u'v-uv')/v^2

⒊y=f(x)的反函数是x=g(y),则有y'=1/x'

2推导过程:

证:1.显而易见,y=c是一条平行于x轴的直线,所以处处的切线都是平行于x的,故斜率为0。用导数的定义做也是一样的:y=c,△y=c-c=0,lim△x→0△y/△x=0。

⒉这个的推导暂且不证,因为如果根据导数的定义来推导的话就不能推广到n为任意实数的一般情况。在得到 y=e^x y'=e^x和y=lnx y'=1/x这两个结果后能用复合函数的求导给予证明。

⒊y=a^x,

△y=a^(x+△x)-a^x=a^x(a^△x-1)

△y/△x=a^x(a^△x-1)/△x

如果直接令△x→0,是不能导出导函数的,必须设一个辅助的函数β=a^△x-1通过换元进行计算。由设的辅助函数可以知道:△x=loga(1+β)。

所以(a^△x-1)/△x=β/loga(1+β)=1/loga(1+β)^1/β

显然,当△x→0时,β也是趋向于0的。而limβ→0(1+β)^1/β=e,所以limβ→01/loga(1+β)^1/β=1/logae=lna。

把这个结果代入lim△x→0△y/△x=lim△x→0a^x(a^△x-1)/△x后得到lim△x→0△y/△x=a^xlna。

可以知道,当a=e时有y=e^x y'=e^x。