(2)y′=(x·tan x)′=′
=
=
=.
(3)方法一 y′=[(x+1)(x+2)(x+3)]′
=[(x+1)(x+2)]′(x+3)+(x+1)(x+2)(x+3)′
=[(x+1)′(x+2)+(x+1)(x+2)′](x+3)+(x+1)(x+2)
=(x+2+x+1)(x+3)+(x+1)(x+2)
=(2x+3)(x+3)+x2+3x+2
=3x2+12x+11.
方法二 ∵(x+1)(x+2)(x+3)=(x2+3x+2)(x+3)
=x3+6x2+11x+6,
∴y′=[(x+1)(x+2)(x+3)]′=(x3+6x2+11x+6)′
=3x2+12x+11.
(4)方法一 y′=′
=
==.
方法二 ∵y===1-,
∴y′=′=′
=-=.