思考2 什么叫回归分析?
答 回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法.
思考3 对具有线性相关关系的两个变量进行回归分析有哪几个步骤?
答 基本步骤为画散点图,求回归直线方程,用回归直线方程进行预报.
例1 若从某大学中随机选取8名女大学生,其身高和体重数据如下表所示:
编号 1 2 3 4 5 6 7 8 身高/cm 165 165 157 170 175 165 155 170 体重/kg 48 57 50 54 64 61 43 59 求根据女大学生的身高预报体重的回归方程,并预报一名身高为172 cm的女大学生的体重.
解 (1)画散点图
选取身高为自变量x,体重为因变量y,画出散点图,展示两个变量之间的关系,并判断二者是否具有线性关系.
由散点图可以发现,样本点呈条状分布,身高和体重有比较好的线性相关关系,因此可以用回归直线y=bx+a来近似刻画它们之间的关系.
(2)建立回归方程由计算器可得\s\up6(^(^) =0.849,\s\up6(^(^) =-85.712.
于是得到回归直线方程为\s\up6(^(^) =0.849x-85.712.
(3)预报和决策
当x=172时,\s\up6(^(^) =0.849×172-85.712=60.316(kg).
即一名身高为172 cm的女大学生的体重预报值为60.316 kg.
反思与感悟 在使用回归直线方程进行预报时要注意:
(1)回归直线方程只适用于我们所研究的样本的总体;
(2)我们所建立的回归直线方程一般都有时间性;
(3)样本取值的范围会影响回归直线方程的适用范围;
(4)不能期望回归直线方程得到的预报值就是预报变量的精确值.
跟踪训练1 某研究机构对高三学生的记忆力x和判断力y进行统计分析,得下表数据:
x 6 8 10 12 y 2 3 5 6 (1)请画出上表数据的散点图(要求:点要描粗);