2(a2+b2+c2)≥2(ab+bc+ac),
所以a2+b2+c2≥ab+bc+ac(当且仅当a=b=c时等号成立).
2.已知x>0,y>0,x+y=1,求证≥9.
证明:法一:因为x>0,y>0,1=x+y≥2,
所以xy≤.
所以=1+++
=1++=1+≥1+8=9.
法二:因为1=x+y,
所以=
==5+2.
又x>0,y>0,所以+≥2,
所以≥5+2×2=9.
用分析法证明不等式[学生用书P29]
设x≥1,y≥1,证明x+y+≤++xy.
证明:由于x≥1,y≥1,
要证x+y+≤++xy,
只需证xy(x+y)+1≤y+x+(xy)2.
因为[y+x+(xy)2]-[xy(x+y)+1]
=[(xy)2-1]-[xy(x+y)-(x+y)]
=(xy+1)(xy-1)-(x+y)(xy-1)
=(xy-1)(xy-x-y+1)
=(xy-1)(x-1)(y-1),