导数及其应用章末复习课 新人教版选修2-2
题型一 导数与曲线的切线
利用导数求切线方程时关键是找到切点,若切点未知需设出.常见的类型有两种,一类是求"在某点处的切线方程",则此点一定为切点,易求斜率进而写出直线方程即可得;另一类是求"过某点的切线方程",这种类型中的点不一定是切点,可先设切点为Q(x1,y1),由=f′(x1)和y1=f(x1)求出x1,y1的值,转化为第一种类型.
例1 已知函数f(x)=x-aln x(a∈R).
(1)当a=2时,求曲线y=f(x)在点A(1,f(1))处的切线方程;
(2)求函数f(x)的极值.
解 函数f(x)的定义域为(0,+∞),f′(x)=1-.