①求出导数为零的点.
②比较这些点与端点处函数值的大小,就可求出函数的最大值和最小值.
(2)若函数在闭区间[a,b]上连续且单调,则最大、最小值在端点处取得.
跟踪训练1 求下列函数的最值:
(1)f(x)=x3-4x+4,x∈[0,3];(2)f (x)=ex(3-x2),x∈[2,5].
∴函数f(x)在[0,3]上的最大值为4,最小值为-.
(2)∵f(x)=3ex-e 2,
∴f′(x)=3ex-(e 2+2e )=-ex(x2+2x-3)=-ex(x+3)(x-1),
∵在区间[2,5]上,f′(x)=-ex(x+3)(x-1)<0,
即函数f(x)在区间[2,5]上单调递减,
∴x=2时,函数f(x)取得最大值f(2)=-e2;
x=5时,函数f(x)取得最小值f (5)=-22e5.
探究点二 含参数的函数的最值问题
例2 已知a是实数,函数f(x)=x2(x-a).
(1)若f′(1)=3,求a的值及曲线y=f(x)在点(1,f(1))处的切线方程.
(2)求f(x)在区间[0,2]上的最大值.
解 (1)f′(x)=3x2-2ax.因为f′(1)=3-2a=3,
所以a=0.又当a=0时,f(1)=1,f′(1)=3,
所以曲线y=f(x)在点(1,f(1))处的切线方程为3x-y-2=0.
(2)令f′(x)=0,解得x1=0,x2=.
当≤0,即a≤0时,f(x)在[0,2]上单调递增,从而f(x)max=f(2)=8-4a.
当≥2,即a≥3时,f(x)在[0,2]上单调递减,从而f(x)max=f(0)=0.
当0<<2,即0 从而f(x)max=综上所述,f(x)max=