的一种方法。
变式训练2、已知,求证:(且)
例3、设二次函数, 求证:中至少有一个不小于.
解析:直接证明中至少有一个不小于.比较困难,我们应采用反证法
证明:假设都小于,则
(1)
另一方面,由绝对值不等式的性质,有
(2)
(1)、(2)两式的结果矛盾,所以假设不成立,原来的结论正确。
点评:结论为"至少"、"至多"等时,我们应考虑用反证法解决。
变式训练3、设0 < a, b, c < 1,求证:(1 a)b, (1 b)c, (1 c)a,不可能同时大于
反思总结:
1.反证法的基本步骤:
(1)假设命题结论不成立,即假设结论的反面成立;
(2)从这个假设出发,经过推理论证,得出矛盾;
(3)从矛盾判定假设不正确,从而肯定命题的结论正确
2.归缪矛盾:
(1)与已知条件矛盾;
(2)与已有公理、定理、定义矛盾;
(3)自相矛盾。