学习重点:
平均变化率的概念、函数在某点处附近的平均变化率.
学习难点:
平均变化率的概念.
学习过程
一:问题提出
问题1气球膨胀率问题:
气球的体积V(单位:L)与半径r(单位:dm)之间的函数关系是__________.
如果将半径r表示为体积V的函数,那么___________.
⑴ 当V从0增加到1时,气球半径增加了___________.
气球的平均膨胀率为___________.
⑵ 当V从1增加到2时,气球半径增加了___________.
气球的平均膨胀率为___________.
可以看出,随着气球体积逐渐增大,它的平均膨胀率逐渐变小了.
思考:当空气容量从V1增加到V2时,气球的平均膨胀率是多少? ___________.
问题2 高台跳水问题:
在高台跳水运动中,运动员相对于水面的高度h(单位:m)与起跳后的时间t(单位:s)存在怎样的函数关系?
在高台跳水运动中,运动员相对于水面的高度h(单位:m)与起跳后的时间t(单位:s)存在函数关系___________.
)如何计算运动员的平均速度?并分别计算0≤t≤0.5,1≤t≤2,1.8≤t≤2,2≤t≤2.2,时间段里的平均速度.
思考计算:和的平均速度
在这段时间里,___________.;
在这段时间里,___________.
探究:计算运动员在这段时间里的平均速度,并思考以下问题:
⑴运动员在这段时间内使静止的吗?
⑵你认为用平均速度描述运动员的运动状态有什么问题吗?
探究过程:如图是函数h(t)= -4.9t2+6.5t+10的图像,结合图形可知,,
所以___________.虽然运动员在这段时间里的平均速度为,但实际情况是运动员仍然运动,并非静止,可以说明用平均速度不能精确描述运动员的运动状态.
(1)计算和思考,展开讨论;
(2)说出自己的发现,并初步修正到最终的结论上.
(3)得到结论是:①平均速度只能粗略地描述运动员的运动状态,它并不能反映某一刻的运动状态. ②需要寻找一个量,能更精细地刻画运动员的运动状态;
二平均变化率概念:
1.上述问题中的变化率可用式子 表示, 称为函数f(x)从x1到x2的平均变