人教版九年级上册数学《全册教学设计教案》免费下载6
人教版九年级上册数学《全册教学设计教案》免费下载6第2页

 例1.将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.

分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此,方程3x(x-1)=5(x+2)必须运用整式运算进行整理,包括去括号、移项等.

  解:略

  注意:二次项、二次项系数、一次项、一次项系数、常数项都包括前面的符号.

例2.(学生活动:请二至三位同学上台演练) 将方程(x+1)2+(x-2)(x+2)=1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项.

分析:通过完全平方公式和平方差公式把(x+1)2+(x-2)(x+2)=1化成ax2+bx+c=0(a≠0)的形式.

解:略

三、巩固练习

  教材 练习1、2

  补充练习:判断下列方程是否为一元二次方程?

  (1)3x+2=5y-3 (2) x2=4 (3) 3x2-=0 (4) x2-4=(x+2) 2 (5) ax2+bx+c=0

四、应用拓展

例3.求证:关于x的方程(m2-8m+17)x2+2mx+1=0,不论m取何值,该方程都是一元二次方程.

分析:要证明不论m取何值,该方程都是一元二次方程,只要证明m2-8m+17≠0即可.

证明:m2-8m+17=(m-4)2+1

∵(m-4)2≥0

∴(m-4)2+1>0,即(m-4)2+1≠0

  ∴不论m取何值,该方程都是一元二次方程.

• 练习: 1.方程(2a-4)x2-2bx+a=0, 在什么条件下此方程为一元二次方程?在什么条件下此方程为一元一次方程?

   2.当m为何值时,方程(m+1)x/4m/-4+27mx+5=0是关于的一元二次方程

五、归纳小结(学生总结,老师点评)

本节课要掌握:

(1)一元二次方程的概念;(2)一元二次方程的一般形式ax2+bx+c=0(a≠0)和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用.

六、布置作业

第2课时 21.1 一元二次方程

教学内容

1.一元二次方程根的概念;

2.根据题意判定一个数是否是一元二次方程的根及其利用它们解决一些具体题目.

教学目标

了解一元二次方程根的概念,会判定一个数是否是一个一元二次方程的根及利用它们解决一些具体问题.

提出问题,根据问题列出方程,化为一元二次方程的一般形式,列式求解;由解给出根的概念;再由根的概念判定一个数是否是根.同时应用以上的几个知识点解决一些具体问题.

重难点关键

1.重点:判定一个数是否是方程的根;

2.难点关键:由实际问题列出的一元二次方程解出根后还要考虑这些根是否确定是实际问题的根.