2019-2020学年北师大版选修2-2 5.1.1 数的概念的拓展教案
2019-2020学年北师大版选修2-2   5.1.1 数的概念的拓展教案第1页

           第一课时 数系的扩充与复数的概念

一、教学目标:1、知识与技能:了解引进复数的必要性;理解并掌握虚数的单位i;2、过程与方法:理解并掌握虚数单位与实数进行四则运算的规律;3、 情感、态度与价值观:理解并掌握复数的有关概念(复数集、代数形式、虚数、纯虚数、实部、虚部) 理解并掌握复数相等的有关概念。

二、教学重点,难点:复数的基本概念以及复数相等的充要条件。

三、教学方法:阅读理解,探析归纳,讲练结合

四、教学过程

(一)、问题情境

1、情境:数的概念的发展:从正整数扩充到整数,从整数扩充到有理数,从有理数扩充到实数,数的概念是不断发展的,其发展的动力来自两个方面.①解决实际问题的需要.由于计数的需要产生了自然数;为了刻画具有相反意义的量的需要产生了负数;由于测量等需要产生了分数;为了解决度量正方形对角线长的问题产生了无理数(即无限不循环小数).②解方程的需要.为了使方程有解,就引进了负数,数系扩充到了整数集;为了使方程有解,就要引进分数,数系扩充到了有理数集;为了使方程有解,就要引进无理数,数系扩充到了实数集. 引进无理数以后,我们已经能使方程永远有解.但是,这并没有彻底解决问题,当时,方程在实数范围内无解.为了使方程有解,就必须把实数概念进一步扩大,这就必须引进新的数.(可以以分解因式:为例)

2、问题:实数集应怎样扩充呢?

(二)、新课探析

1、为了使方程有解,使实数的开方运算总可以实施,实数集的扩充就从引入平方等于的"新数"开始.为此,我们引入一个新数,叫做虚数单位().并作如下规定:①;②实数可以与进行四则运算,进行四则运算时,原有的加法、乘法运算律仍然成立.在这种规定下,可以与实数相乘,再同实数相加得.由于满足乘法交换律和加法交换律,上述结果可以写成 (