2017-2018学年人教A版必修三 3.1.2 概率的意义 教案 (2)
2017-2018学年人教A版必修三      3.1.2 概率的意义   教案 (2)第1页

3.1.2 概率的意义

  

项目 内容 课题 3.1.2 概率的意义

            (共 1 课时) 修改与创新 教学

目标 1.知识与技能:(1)正确理解概率的意义;(2)利用概率知识正确理解现实生活中的实际问题.

2.过程与方法:通过对现实生活中的"掷币"、"游戏的公平性"、"彩票中奖"等问题的探究,感知应用数学知识解决数学问题的方法,理解逻辑推理的数学方法.

3.情感态度与价值观:通过对概率的实际意义的理解,体会知识来源于实践并应用于实践的辩证唯物主义观,进而体会数学与现实世界的联系.

教学重、

难点 教学重点:理解概率的意义.

教学难点:用概率的知识解释现实生活中的具体问题.

教学

准备 多媒体课件 教学过程

推进新课

新知探究

提出问题

(1)有人说,既然抛掷一枚硬币出现正面向上的概率为0.5,那么连续抛掷一枚硬币两次,一定是一次正面朝上,一次反面朝上,你认为这种想法正确吗?

(2)如果某种彩票中奖的概率为,那么买1 000张彩票一定能中奖吗?

(3)在乒乓球比赛中,裁判员有时也用数名运动员伸出手指数的和的单数与双数来决定谁先发球,其具体规则是:让两名运动员背对背站立,规定一名运动员得单数胜,另一名运动员得双数胜,然后裁判员让两名运动员同时伸出一只手的手指,两个人的手指数的和为单数,则指定单数的运动员得到先发球权,若两个人的手指数的和为双数,则指定双数胜的运动员得到先发球权,你认为这个规则公平吗?

(4)"天气预报说昨天降水概率为90%,结果根本一点雨都没下,天气预报也太不准确了."学了概率后,你能给出解释吗?

(5)阅读课本的内容了解孟德尔与遗传学.

(6)如果连续10次掷一枚骰子,结果都是出现1点.你认为这枚骰子的质地均匀吗?为什么?

几个同学各取一枚同样的硬币(如壹角,伍角,壹元),连续两次抛掷,观察它落地后的朝向,并记录结果,重复上面的过程10次,将所有参与试验的同学结果汇总,计算三种结果发生的频率,估出三种结果的概率,填入下面表格.

试验的总次数:100 频数 频率 概率 出现两次正面朝上 25 出现两次反面朝上 25 出现一次正面朝上,一次反面朝上 50 随着试验次数的增加,可以发现,"一次正面朝上,一次反面朝上"的频率与"两次正面朝上","两次反面朝上"的频率不一样,它们分别是0.5,0.25和0.25,进而知道"两次正面朝上"的概率为0.25,"两次反面朝上"的概率为0.25,"一次正面朝上,一次反面朝上"的概率是0.5.

通过上面的试验,我们发现,随机事件在一次试验中发生与否是随机的,但随机中含有规律性,认识了这种随机性的规律性,可以帮助我们准确预测随机事件发生的可能性.

(2)买1 000张彩票,相当于1 000次试验,因为每次试验的结果都是随机的,所以做1 000次试验的结果也是随机的,也就是说,买1 000张彩票有可能没有一张中奖.虽然中奖的张数是随机的,但这种随机性中,具有规律性,随着试验次数的增加,即随着买的彩票的增加,大约有的彩票中奖,所以没有一张中奖也是有可能的.

请同学们把同样大小的9个白色乒乓球和1个黄色乒乓球放在1个不透明的袋中,然后每次摸出1个球后再放回袋中,这样摸10次,观察是否一定至少有1次摸到黄球.

因为每次摸出1个球相当于1次随机试验,其结果有两种可能:黄球或白球,随着试验次数的增加,会发现摸到白球的频率要比摸到黄球的频率大,但没有1次摸到黄球也是有可能的,所以不一定至少有1次摸到黄球.

(3)是公平的.由于2人出手指的结果有单数和双数,每个人出单数和双数的机会是相等的,因此,和为单数和双数的机会是相等的,因而是公平的.

(4)天气预报的"降水"是一个随机事件,概率为90%指明了"降水"这个随机事件发生的概率,我们知道:在一次试验中,概率为90%的事件也可能不出现,因此,"昨天没有下雨"并不说明"昨天的降水概率为90%"的天气预报是错误的.

(5)阅读课本的内容后加以说明.

(6)利用概率知识加以说明.

讨论结果:(1)这种想法显然是错误的,通过具体的试验可以发现有三种可能的结果:"两次正面朝上""两次反面朝上""一次正面朝上,一次反面朝上",而且其概率分别为0.25,0.25,0.5.

(2)不一定能中奖,因为买1 000张彩票相当于做1 000次试验,因为每次试验的结果都是随机的,即每张彩票可能中奖也可能不中奖,因此,1 000张彩票中可能没有一张中奖,也可能有一张、两张乃至多张中奖.

(3)规则是公平的.

(4)天气预报的"降水"是一个随机事件,因此,"昨天没有下雨"并不说明"昨天的降水概率为90%"的天气预报是错误的.

(5)奥地利遗传学家(G.Mendel,1822-1884)用豌豆进行杂交试验,下表为试验结果(其中F1为第一子代,F2为第二子代):

性状 F1的表现 F2的表现 种子的形状 全部圆粒 圆粒5 474 皱粒1 850 圆粒∶皱粒≈2.96∶1 茎的高度 全部高茎 高茎787 矮茎277 高茎∶矮茎≈2.84∶1 子叶的颜色 全部黄色 黄色6 022 绿色2 001 黄色∶绿色≈3.01∶1 豆荚的形状 全部饱满 饱满882 不饱满299 饱满∶不饱满≈2.95∶1 孟德尔发现第一子代对于一种性状为必然事件,其可能性为100%,另一种性状的可能性为0,而第二子代对于前一种性状的可能性约为75%,后一种性状的可能性约为25%,通过进一步研究,他发现了生物遗传的基本规律.实际上,孟德尔是从某种性状发生的频率作出估计的.

(6)利用刚学过的概率知识我们可以进行推断,如果它是均匀的,通过试验和观察,可以发现出现各个面的可能性都应该是,从而连续10次出现1点的概率为()10≈0.000 000 001 653 8,这在一次试验(即连续10次投掷一枚骰子)中是几乎不可能发生的.而当骰子不均匀时,特别是当6点的那面比较重时(例如灌了铅或水银),会使出现1点的概率最大,更有可能连续10次出现1点.

现在我们面临两种可能的决策:一种是这枚骰子的质地均匀,另一种是这枚骰子的质地不均匀.当连续10次投掷这枚骰子,结果都是出现1点,这时我们更愿意接受第二种情况:这枚骰子靠近6点的那面比较重.原因是在第二种假设下,更有可能出现10个1点.

如果我们面临的是从多个可选答案中挑选正确答案的决策任务,那么"使得样本出现的可能性最大"可以作为决策的准则,例如对上述思考题所作的推断.这种判断问题的方法称为极大似然法.极大似然法是统计中重要的统计思想方法之一.

如果我们的判断结论能够使得样本出现的可能性最大,那么判断正确的可能性也最大.这种判断问题的方法称为似然法.似然法是统计中重要的统计思想方法之一.

应用示例

例1 为了估计水库中的鱼的尾数,可以使用以下的方法,先从水库中捕出一定数量的鱼,例如2 000尾,给每尾鱼作上记号,不影响其存活,然后放回水库.经过适当的时间,让其和水库中其余的鱼充分混合,再从水库中捕出一定数量的鱼,例如500尾,查看其中有记号的鱼,设有40尾.

试根据上述数据,估计水库内鱼的尾数.

分析:学生先思考,然后交流讨论,教师指导,这实际上是概率问题,即2 000尾鱼在水库中占所有鱼的百分比,特别是500尾中带记号的有40尾,就说明捕出一定数量的鱼中带记号的概率为,问题可解.

解:设水库中鱼的尾数为n,A={带有记号的鱼},则有P(A)=. ①

因P(A)≈, ②

由①②得,解得n≈25 000.

所以估计水库中约有鱼25 000尾.

变式训练

1.某水产试验厂实行某种鱼的人工孵化,10 000个鱼卵能孵出8 513尾鱼苗,根据概率的统计定义解答下列问题:

(1)求这种鱼卵的孵化概率(孵化率);

(2)30 000个鱼卵大约能孵化多少尾鱼苗?

(3)要孵化5 000尾鱼苗,大概得准备多少鱼卵?(精确到百位)

解:(1)这种鱼卵的孵化频率为=0.851 3,它近似的为孵化的概率.

(2)设能孵化x个,则,∴x=25 539,

即30 000个鱼卵大约能孵化25 539尾鱼苗.

(3)设需备y个鱼卵,则,∴y≈5 873,

即大概得准备5 873个鱼卵.

2.有人告诉你,放学后送你回家的概率如下:

试将以上数据分别与下面的文字描述相配.

①很可能送你回家,但不一定送.

②送与不送的可能性一样多.

③送你回家的可能性极小.

答案:50%→②;2%→③;90%→①.

例2 足球射门与概率

如果你是一名足球运动员,在足球比赛中若遇到罚点球射门时,这时若要罚进不仅仅要靠运气,还要靠智慧的头脑.首先假设不存在射飞或射高的情况.在扑对方向的前提下守门员也不会失误或脱手,也不考虑补射的情况(点球大战中根本不存在).就是说球只有两种状态:射进或被扑出.球员射门有6个方向:中下,中上,左下,右下,左上,右上.而作为守门员,扑球有5种选择:不动,左下,右下,左上,右上.

若①不动可扑出中下和中上两个方向的点球;

②左下可扑出左下和中下;

③右下可扑出右下和中下;

④左上可扑出左上;

⑤右上可扑出右上.

你会用你智慧的大脑运用概率的知识选择射门的方向吗?

解:其中①②③3种选择可扑出两个方向的来球,换言之,这3种选择的效率是其他两种选择的2倍.所以作为一个守门员,面对一个没有经验的对手,扑球应该多选择①②③.那么如何做一个有经验的射手呢?如果你面对的是一个初级的守门员,那么应该清楚他的扑球方向是大致随机的,即随机选择①-⑤.那么从下图(1)可知6个射门方向被堵住的可能性是:

所以这种情况下我们要少打中下,其他的五个方向可以任意选择.但如果守门员是一名富有经验的高手,他清楚①②③的效益是④⑤的2倍,他必然会有意识地多扑①②③,而且至少概率是④⑤的2倍.(否则就不能体现这个效益)就是说8次扑救中①②③各两次,④⑤各一次.那么6个射门方向被堵住的概率就变成了:

现在不仅不能射中下,而且还要有意识地多打两个上角,因为进球的概率是.希望这道题目能对你的点球大战有所帮助.当然在实战中还要综合考虑脚法、力量、体能、守门员技术及对手心理等等.

变式训练

央视"幸运52"某期节目中公布了这样一道抢答题:在三扇门背后(比如说1号、2号及3号)藏了两只羊与一辆小汽车,如果你猜对了藏汽车的门,则汽车就是你的.现在先让你选择,比方说你选择了1号门,然后主持人打开了一扇门,让你看清楚这扇门背后是只羊,接着问你是否应该重新选择,以增大猜对汽车的概率,你能给出回答吗?1号门背后是汽车的概率变了吗?

解:无论你给出怎样的回答,1号门背后是汽车的概率都是.这个题意在考查答题者的概率知识与现场的应变能力.

知能训练

课本练习1、2、3.

拓展提升

某商场为迎接国庆举办新产品问世促销活动,方式是买一份糖果摸一次彩,摸彩的器具是绿、白两色的乒乓球,这些乒乓球的大小和质料完全相同.商场拟按中奖率1%设大奖,其余99%为小奖.为了制定摸彩的办法,商场向职工广泛征集方案,对征集到的优秀方案进行奖励.如果你是此商场职工,你将会提出怎样的方案?

注:商场提供的摸彩器材是棱长约30 cm的立方体形木箱,密封良好,不透光,木箱上方可容一只手伸入,另备足够多的白色乒乓球和少量绿色乒乓球.

解:方案一:

在箱内放置100个乒乓球,其中1个为绿色乒乓球,其余99个为白色乒乓球,顾客一次摸出1个乒乓球,如果为绿色乒乓球,即中大奖,否则中小奖,本方案中大奖的概率为:P1=.

方案二:

在箱内放置14个乒乓球,其中2个为绿色乒乓球,其余12个为白色乒乓球.顾客一次摸出2个乒乓球为绿色,即中大奖;如果摸出的2个乒乓球为白色,或1个为白色、1个为绿色,则中小奖.本方案中大奖的概率为:P2=.

方案三:

在箱内放置15个乒乓球,其中2个为绿色乒乓球,其余13个为白色乒乓球.顾客摸球和中奖的办法与方案二相同.本方案中大奖的概率为:P3=.

方案四:

在箱内放置25个乒乓球,其中3个为绿色乒乓球,其余22个为白色乒乓球.顾客一次摸出2个乒乓球(或分两次摸,每次摸一个乒乓球,不放回),如果摸出的2个乒乓球为绿色,即中大奖;如果摸出的2个乒乓球为白色,或1个为白色、1个为绿色,则中小奖.本方案中大奖的概率为:P4=.

课堂小结

概率是一门研究现实世界中广泛存在的随机现象的科学,正确理解概率的意义是认识、理解现实生活中有关概率的实例的关键,学习过程中应有意识形成概率意识,并用这种意识来理解现实世界,主动参与对事件发生的概率的感受和探索.通过以上例题与练习可以感到,数学特别是概率正越来越多地应用到我们的生活当中.它们已经不是数学家手中的抽象理论,而成为我们认识世界的工具.从彩票中奖,到证券分析;从基因工程,到法律诉讼;从市场调查,到经济宏观调控;概率无处不在.

作业