答案:3sin2xcos x+3x2·cos x3
3.求下列函数的导数:
(1)y=e2x2+3x;(2)y=.
解:(1)y=eu,u=2x2+3x,
所以y′x=y′u·u′x=eu·(2x2+3x)′
=eu·(4x+3)=(4x+3)e2x2+3x.
(2)∵y==(1-3x)-4,
∴可设y=u-4,u=1-3x,
∵y′u=-4u-5,u′x=-3,
∴y′x=y′u·u′x=-4u-5×(-3)=12(1-3x)-5.
求导法则的综合应用 [例2] 求下列函数的导数.
(1)y=31-xsin(2x-1);
(2)y=.
[思路点拨] 根据导数的运算法则及复合函数的求导公式求解.
[精解详析] (1)y′=(31-x)′sin(2x-1)+31-x·[sin(2x-1)]′
=-31-xln 3·sin(2x-1)+31-x·2cos(2x-1)
=31-x[2cos(2x-1)-sin(2x-1)·ln 3].
(2)y′=
=
=
= .
[一点通] (1)利用加减乘除四则运算与复合生成函数的方法,都能由基本初等函数生成一些新的函数,认清这一点可帮助我们分析函数结构.
(2)认清函数结构之后,不要急于求导,应注意恰当利用代数、三角变换方法,化简函数解析式,以达到准确套用法则,明确求导过程的目的.