例1 以椭圆的焦距为直径并过两焦点的圆,交椭圆于4个不同的点,顺次连接这四个点和两个焦点恰好组成一个正六边形,那么这个椭圆的离心率为________.
解析 如图所示,设椭圆的方程为+=1(a>b>0),半焦距为c,由题意知∠F1AF2=90°,∠AF2F1=60°.∴|AF2|=c,
|AF1|=2c·sin60°=c.
∴|AF1|+|AF2|=2a=(+1)c.
∴e===-1.
答案 -1
点评 本题利用了圆及正六边形的几何性质,并结合椭圆的定义,化难为易,使问题简单解决.
2.解方程(组)求离心率
例2 椭圆+=1(a>b>0)的左焦点为F1(-c,0),A(-a,0),B(0,b)是两个顶点,如果F1到直线AB的距离为,则椭圆的离心率e=________.
解析 如图所示,直线AB的方程为+=1,
即bx-ay+ab=0.
∵点F1(-c,0)到直线AB的距离为,∴=,
∴|a-c|=,即7a2-14ac+7c2=a2+b2.
又∵b2=a2-c2,整理,得5a2-14ac+8c2=0.