①向量是既有大小又有方向的量,故零向量也有大小和方向;
②0.332是有理数;
③y=sin x(x∈R)是周期函数.
[解析] (1)对于A,小前提与大前提间逻辑错误,不符合演绎推理三段论形式;对于B,符合演绎推理三段论形式且推理正确;对于C,大小前提颠倒,不符合演绎推理三段论形式;对于D,大小前提及结论颠倒,不符合演绎推理三段论形式.
[答案] B
(2)①大前提:向量是既有大小又有方向的量.
小前提:零向量是向量.
结论:零向量也有大小和方向.
②大前提:所有的循环小数都是有理数.
小前提:0.332是循环小数.
结论:0.332是有理数.
③大前提:三角函数是周期函数.
小前提:y=sin x(x∈R)是三角函数.
结论:y=sin x(x∈R)是周期函数.
[规律方法] 把演绎推理写成"三段论"的一般方法:
1用"三段论"写推理过程时,关键是明确大、小前提,三段论中大前提提供了一个一般性原理,小前提提供了一种特殊情况,两个命题结合起来,揭示一般性原理与特殊情况的内在联系.
2在寻找大前提时,要保证推理的正确性,可以寻找一个使结论成立的充分条件作为大前提.
[跟踪训练]
1.正弦函数是奇函数,f(x)=sin(x2+1)是正弦函数,因此f(x)=sin(x2+1)是奇函数,以上推理中"三段论"中的________是错误的.
[解析] f(x)=sin(x2+1)不是正弦函数,故小前提错误.
[答案] 小前提
2.将下列演绎推理写成三段论的形式.
①平行四边形的对角线互相平分,菱形是平行四边形,所以菱形的对角线