所以当x变化时,f′(x),f(x)的变化情况如下表:
x (-∞,0) 0 (0,1) 1 (1,+∞) f′(x) - 0 + 0 + f(x) 单调
递减↘ 极小值 单调
递增↗ 无极值 单调
递增↗ 所以当x=0时,函数取得极小值,且y极小=-6.
(3)f(x)=|x|=
显然函数f(x)=|x|在x=0处不可导,
当x>0时,f′(x)=x′=1>0,
函数f(x)=|x|在(0,+∞)内单调递增;
当x<0时,f′(x)=(-x)′=-1<0,
函数f(x)=|x|在(-∞,0)内单调递减.
故当x=0时,函数取得极小值,且y极小=0.
1.讨论函数的性质要注意定义域优先的原则.
2.极值点与导数的关系
(1)可导函数的极值点一定是导数值为0的点,导数值为0的点不一定是极值点.
点x0是可导函数f(x)在区间(a,b)内的极值点的充要条件:
①f′(x0)=0;
②点x0两侧f′(x)的符号不同.
(2)不可导的点可能是极值点(如本例(3)中x=0点),也可能不是极值点(如y=,在x=0处不可导,在x=0处也取不到极值),所以函数的极值点可能是f′(x)=0的根,也可能是不可导点.