题型一 测量高度问题
例1 如图所示,D,C,B在地平面同一直线上,DC=10 m,从D,C两地测得A点的仰角分别为30°和45°,则A点离地面的高AB等于( )
A.10 m B.5 m
C.5(-1) m D.5(+1) m
答案 D
解析 方法一 设AB=x m,则BC=x m.
∴BD=(10+x)m.
∴tan∠ADB===.
解得x=5(+1).
∴A点离地面的高AB等于5(+1)m.
方法二 ∵∠ACB=45°,∴∠ACD=135°,
∴∠CAD=180°-135°-30°=15°.
由正弦定理,得AC=·sin∠ADC
=·sin 30°= m,
∴AB=ACsin 45°=5(+1)m.
反思感悟 利用正弦、余弦定理来解决实际问题时,要从所给的实际背景中,进行加工、提炼,抓住本质,抽象出数学模型,使之转化为解三角形问题.
跟踪训练1 江岸边有一炮台C高30 m,江中有两条船B,A,船与炮台底部D在同一直线上,由炮台顶部测得俯角分别为45°和30°,则两条船相距________ m.