求证:(1)BG⊥平面PAD;
(2)AD⊥PB.
证明 (1)由题意知△PAD为正三角形,G是AD的中点,∴PG⊥AD.
又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,∴PG⊥平面ABCD,∴PG⊥BG.
又∵四边形ABCD是菱形且∠DAB=60°,
∴△ABD是正三角形,∴BG⊥AD.
又AD∩PG=G,∴BG⊥平面PAD.
(2)由(1)可知BG⊥AD,PG⊥AD,BG∩PG=G,
∴AD⊥平面PBG.又PB⊂平面PBG,∴AD⊥PB.
反思与感悟 当题目条件中有面面垂直的条件时,往往要由面面垂直的性质定理推导出线面垂直的条件,进而得到线线垂直的关系.因此见到面面垂直条件时要找准两平面的交线,有目的地在平面内找交线的垂线.
跟踪训练1 如图,在三棱锥P-ABC中,PA⊥平面ABC,平面PAB⊥平面PBC.求证:BC⊥AB.
证明 如图,在平面PAB内,
作AD⊥PB于点D.
∵平面PAB⊥平面PBC,
且平面PAB∩平面PBC=PB,