2019-2020学年北师大版必修二 2、1直线与直线的方程教案
2019-2020学年北师大版必修二  2、1直线与直线的方程教案第2页

因为平面直角坐标系内的每一条直线都有确定的倾斜程度, 引入直线的倾斜角之后, 我们就可以用倾斜角α来表示平面直角坐标系内的每一条直线的倾斜程度.

如图, 直线a∥b∥c, 那么它们的倾斜角α相等吗? 答案是肯定的.所以一个倾斜角α不能确定一条直线.

确定平面直角坐标系内的一条直线位置的几何要素: 一个点P和一个倾斜角α.

(二)直线的斜率

一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是k = tanα

⑴当直线l与x轴平行或重合时, α=0°, k = tan0°=0;

⑵当直线l与x轴垂直时, α= 90°, k 不存在.

由此可知, 一条直线l的倾斜角α一定存在,但是斜率k不一定存在.

例如, α=45°时, k = tan45°= 1;

α=135°时, k = tan135°= tan(180°- 45°) = - tan45°= - 1.

学习了斜率之后, 我们又可以用斜率来表示直线的倾斜程度.

(三) 直线的斜率公式:

给定两点P1(x1,y1),P2(x2,y2),x1≠x2,如何用两点的坐标来表示直线P1P2的斜率?

可用计算机作动画演示: 直线P1P2的四种情况, 并引导学生如何作辅助线,共同完成斜率公式的推导.(略)

斜率公式: 对于上面的斜率公式要注意下面四点:

(1) 当x1=x2时,公式右边无意义,直线的斜率不存在,倾斜角α= 90°, 直线与x轴垂直;

(2)k与P1、P2的顺序无关, 即y1,y2和x1,x2在公式中的前后次序可以同时交换, 但分