知识点三 导数与函数的极值、最值
利用导数研究函数的极值和最值是导数的另一主要应用.
1.应用导数求函数极值的一般步骤:
(1)确定函数f(x)的定义域;
(2)解方程f′(x)=0的根;
(3)检验f′(x)=0的根的两侧f′(x)的符号.
若左正右负,则f(x)在此根处取得极大值;
若左负右正,则f(x)在此根处取得极小值;
否则,此根不是f(x)的极值点.
2.求函数f(x)在闭区间[a,b]上的最大值、最小值的方法与步骤:
(1)求f(x)在(a,b)内的极值;
(2)将(1)求得的极值与f(a)、f(b)相比较,其中最大的一个值为最大值,最小的一个值为最小值;
特别地,①当f(x)在(a,b)上单调时,其最小值、最大值在区间端点处取得,②当f(x)在(a,b)内只有一个极值点时,若在这一点处f(x)有极大(小)值,则可以断定f(x)在该点处取得最大(小)值,这里(a,b)也可以是(-∞,+∞).