=(-3)× ×(-)×(-)×(-8)×(-1)
=-3××××8×1
=-9
例2 计算(-1999)×(-2000)×(-2001)×(-2002)×2003×(-2004)×0
提示 不管数字有多么复杂,只要其中有一个为0,则积为0.
数学游戏 学生活动:按下列要求探索:
(1)任选两个有理数(至少有一个为负),分别填入□和○内,并比较两个结果:
□×○=_________和○×□________
(2)任选三个有理数(至少有一个为负),分别填入□、○和◇中,并比较计算结果:
(□·○)·◇=_________和□·(○·◇)=__________
(3)任选三个有理数(至少有一个为负),分别填入□、○和◇中,并比较计算结果:
◇·(□+○)=________和◇·□和◇·○=________
总结 有理数的乘法仍满足交换律,结合律和分配律.
乘法交换律:两个数相乘,交换因数的位置,积不变,用式子表示为a·b=b·a
乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变.用式子表示成(a·b)·c=a·(b·c)
乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘.
用字母表示成:a(b+c)=a·b+a·c
例3 (投影)计算:(1)-×(8--)
(2)19×(-15)
分析①利用乘法分配
②将19换成20-,再用分配律计算.
学生板演、练习.
(四)总结反思
本节课我们的成果是探究出有理数的乘法运算律并进行了应用.可见,运算律的运用十分灵活,各种运算律常常是混合应用的.这就要求我们要有较好的掌握运算律进行计算的能力,要寻找最佳解题途径,不断总结经验,使自己的能力得到提高.
(五)课堂跟踪反馈
教材第32页1、2题 ,教材第33页练习