否则,若ACα,
由A∈α,M∈α,得B∈α;
由A∈α,Q∈α,得D∈α,则A、B、C、D∈α,
与已知四边形ABCD是空间四边形矛盾.
又∵MNα,∴AC∥α,
又AC α,∴AC∥α,即AC∥平面MNP.
同理可证BD∥平面MNP.
例3.四面体中,分别为的中点,且,
,求证:平面
证明:取的中点,连结,∵分别为的中点,∴
,又∴,∴在中,
∴,∴,又,即,
∴平面
例2.如图是所在平面外一点,平面,是的中点,是上的点,
(1)求证:;(2)当,时,求的长。
(1)证明:取的中点,连结,∵是的中点,
∴,∵ 平面 ,∴ 平面
∴是在平面内的射影 ,取 的中点,连结 ,∵∴,又,∴
∴,∴,由三垂线定理得
(2)∵,∴,∴,∵平面.∴,且,∴
课后作业:
1.在长方体中,经过其对角线的平面分别与棱、相交于两点,则四边形的形状为 .(平行四边形)
2.如图,A,B,C,D四点都在平面,外,它们在内的射影A1,B1,C1,D1是平行四边形的四个顶点,在内的射影A2,B2,C2,D2在一条直线上,求证:ABCD是平行四边形.
证明:∵ A,B,C,D四点在内的射影A2,B2,C2,D2