解:(1)由题意知Sn=a-nan,
当n=1时,S1=a1=a-a1,解得a1=.
当n=2时,S2=a1+a2=a-2a2,解得a2=.
当n=3时,S3=a1+a2+a3=a-3a3,解得a3=.
(2)猜想:an=(n∈N*)
证明:①当n=1时,由(1)知等式成立.
②假设当n=k(k≥1,k∈N*)时等式成立,
即ak=,则当n=k+1时,
ak+1=Sk+1-Sk=a-(k+1)ak+1-(a-kak),
所以ak+1==.
即当n=k+1时,等式成立.
结合①②得an=对任意n∈N*均成立.
用数学归纳法证明42n+1+3n+2能被13整除,其中n∈N+.
[证明] 法一:(1)当n=1时,42×1+1+31+2=91能被13整除,故结论成立.
(2)假设当n=k(k≥1,且k∈N+)时,42k+1+3k+2能被13整除,则当n=k+1时,
42(k+1)+1+3k+3=42k+1·42+3k+2·3-42k+1·3+42k+1·3=42k+1·13+3·(42k+1+3k+2),
∵42k+1·13能被13整除,42k+1+3k+2能被13整除,
∴42k+1·13+3·(42k+1+3k+2)能被13整除.
即当n=k+1时也成立.
由(1)(2)知,当n∈N+时,42n+1+3n+2能被13整除.
法二:(1)当n=1时,42×1+1+31+2=91能被13整除,故结论成立.
(2)假设当n=k(k≥1,k∈N+)时,即42k+1+3k+2能被13整除,则当n=k+1时,
[42(k+1)+1+3k+3]-(42k+1+3k+2)
=(42k+1·42+3k+2·3)-(42k+1+3k+2)
=42k+1·13+2·(42k+1+3k+2)
∵42k+1·13能被13整除,42k+1+3k+2能被13整除.
∴(42(k+1)+1+3k+3)-(42k+1+3k+2)能被13整除.
因而42(k+1)+1+3k+3能被13整除.