2019-2020学年北师大版选修1-2 独立性检验的基本思想及其初步应用 教案
2019-2020学年北师大版选修1-2  独立性检验的基本思想及其初步应用   教案第2页

学生亲身体验独立性检验的实施步骤与必要性.

教学重点:理解独立性检验的基本思想及实施步骤.

教学难点:了解独立性检验的基本思想、了解随机变量的含义.

教学过程:

教学过程:

一、复习准备:

独立性检验的基本步骤、思想

二、讲授新课:

1. 教学例1:

例1 在某医院,因为患心脏病而住院的665名男性病人中,有214人秃顶;而另外772名不是因为患心脏病而住院的男性病人中有175名秃顶. 分别利用图形和独立性检验方法判断秃顶与患心脏病是否有关系?你所得的结论在什么范围内有效?

① 第一步:教师引导学生作出列联表,并分析列联表,引导学生得出"秃顶与患心脏病有关"的结论;

第二步:教师演示三维柱形图和二维条形图,进一步向学生解释所得到的统计结果;

第三步:由学生计算出的值;

第四步:解释结果的含义.

② 通过第2个问题,向学生强调"样本只能代表相应总体",这里的数据来自于医院的住院病人,因此题目中的结论能够很好地适用于住院的病人群体,而把这个结论推广到其他群体则可能会出现错误,除非有其它的证据表明可以进行这种推广.

2. 教学例2:

例2 为考察高中生的性别与是否喜欢数学课程之间的关系,在某城市的某校高中生中随机抽取300名学生,得到如下列联表:

喜欢数学课程 不喜欢数学课程   总 计    男    37    85    122    女    35    143    178   总 计    72    228    300 由表中数据计算得到的观察值. 在多大程度上可以认为高中生的性别与是否数学课程之间有关系?为什么?

(学生自练,教师总结)

强调:①使得成立的前提是假设"性别与是否喜欢数学课程之间没有关系".如果这个前提不成立,上面的概率估计式就不一定正确;

②结论有95%的把握认为"性别与喜欢数学课程之间有关系"的含义;

③在熟练掌握了两个分类变量的独立性检验方法之后,可直接计算的值解决实际问题,而没有必要画相应的图形,但是图形的直观性也不可忽视.

   不健康 健 康  总计 不优秀  41  626  667 优 秀  37  296  333 总 计  78  922  1000 3. 小结:独立性检验的方法、原理、步骤

三、巩固练习:

某市为调查全市高中生学习状况是否对生理健康有影响,随机进行调查并得到如下的列联表:请问有多大把握认为"高中生学习状况与生理健康有关"?