2019-2020学年苏教版选修2-2 演绎推理 教案
2019-2020学年苏教版选修2-2     演绎推理  教案第3页

   又 .

  证明过程包含了几个三段论?

  例3 在锐角三角形ABC中,AD⊥BC, BE⊥AC,D,E是垂足,

  求证:AB的中点M到D,E的距离相等.

  分析 (1)因为有一个内角是直角的三角形是直角三角形 --大前提

        在△ABC中,AD⊥BC,即∠ADB=90°   --小前提

        所以△ABD是直角三角形          --结论

  (2)因为直角三角形斜边上的中线等于斜边的一半  --大前提

     因为 DM是直角三角形斜边上的中线     --小前提

     所以 DM=AB              --结论

     同理 EM=AB,所以 DM=EM.

  四、学生探究

  1.下列表述正确的是 .

  ①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;③演绎推理是由一般到特殊的推理;④类比推理是由特殊到一般的推理;⑤类比推理是由特殊到特殊的推理.

  2.把下列演绎推理写成"三段论"的形式.

  (1)三角函数都是周期函数,y=tanx是三角函数,所以y=tanx是周期函数.

  (2)一切奇数都不能被 2 整除,(2100+1)是奇数,所以(2100+1)不能被2整除.

  五、课堂总结

  1.演绎的前提是一般性原理,演绎所得的结论是蕴涵于前提之中的个别、特殊事实,结论完全蕴涵于前提之中.

  2.在演绎推理中,前提与结论之间存在必然的联系,只要前提是真实的,推理的形式是正确的,那么结论也必定是正确的.因而演绎推理是数学中严格证明的工具.

3.演绎推理是一种收敛性的思维方法,它较少创造性,但却具有条理清晰、令人信服的论证作用,有助于科学的理论化和系统化.