图9
abcd是一个边长为L的正方形,它是磁感应强度为B的匀强磁场横截面的边界线.一带电粒子从ad边的中点O与ad边成θ=30°角且垂直于磁场方向射入.若该带电粒子所带电荷量为q、质量为m(重力不计),则该带电粒子在磁场中飞行时间最长是多少?若要带电粒子飞行时间最长,带电粒子的速度必须符合什么条件?
答案 v≤
解析 从题设的条件中,可知带电粒子在磁场中只受洛伦兹力作用,它做匀速圆周运动,粒子带正电,由左手定则可知它将向ab方向偏转,带电粒子可能的轨道如下图所示(磁场方向没有画出),这些轨道的圆心均在与v方向垂直的OM上.带电粒子在磁场中运动,洛伦兹力提供向心力,有qvB=,r=①
运动的周期为T==②
由于带电粒子做匀速圆周运动的周期与半径和速率均没有关系,这说明了它在磁场中运动的时间仅与轨迹所对的圆心角大小有关.由图可以发现带电粒子从入射边进入,又从入射边飞出,其轨迹所对的圆心角最大,那么,带电粒子从ad边飞出的轨迹中,与ab相切的轨迹的半径也就是它所有可能轨迹半径中的临界半径r0:r>r0,在磁场中运动时间是变化的,r≤r0,在磁场中运动的时间是相同的,也是在磁场中运动时间最长的.由上图可知,三角形O2EF和三角形O2OE均为正三角形,所以有∠OO2E=.
轨迹所对的圆心角为α=2π-=
运动的时间t==
由图还可以得到
r0+=,r0=≥
得v≤
带电粒子在磁场中飞行时间最长是;带电粒子的速度应符合条件v≤.
11.飞行时间质谱仪可通过测量离子飞行时间得到离子的比荷q/m.如图10所示,带正电的离子经电压为U的电场加速后进入长度为L的真空管AB,可测得离子飞越AB所用时间t1.改进以上方法,如图,让离子飞越AB后进入电场为E(方向如图11)的匀强电场区域BC,在电场的作用下离子返回B端,此时,测得离子从A出发后飞行的总时间t2.(不计离子重力)