七年级数学上册《第三章:一元一次方程》教案教学设计免费下载7
七年级数学上册《第三章:一元一次方程》教案教学设计免费下载7第3页

识:从算式到方程是数学的进步.

列方程时,要先设字母表示未知数,通常用x、y、z等字母表示未知数,然后根据问题中的相等关系,写出含有未知数的等式即方程.

例1:根据下列问题,设未知数并列出方程.

(1)用一根长24cm的铁丝围成一个正方形,正方形的边长是多少?

分析:设正方形的边长为x(cm),那么周长为4x(cm),依题意,得4x=24.

(2)一台计算机已使用1700小时,预计每月再使用150小时,经过多少月这台计算机的使用时间达到规定的检修时间2450小时?

分析:设再经过x月这台计算机的使用时间达到规定的检测时间,根据每月再使用150小时,那么x月共使用150x小时.

能表示这个问题的相等关系是什么?

相等关系是:已使用的时间1700小时+还可以使用的时间150x小时=规定的检测时间2450小时.

从而列出方程:1700+150x=2450.

找出表达问题意义的相等关系是列出方程的关键.

(3)某校女生占全体学生的52%,比男生多80人,这个学校有多少学生?

问:女生占全体学生数的52%,那么男生占全体学生数的(1-52%),如果设这个学校有x个学生,那么用含x的式子表示女、男学生数.

女生有52%x人,男生有(1-52%)x人;

问题中的相等关系是什么?

(女生比男生多80人)即女生人数-男生人数=80或女生人数=男生人数+80.

列方程:0.52x-(1-0.52)x=80或0.52x=(1-0.52)x+80.

2.一元一次方程的概念.

观察以上所列出的各方程,有什么特点?每个方程有几个未知数,未知数的指数是多少?

只含有一个未知数,并且未知数的指数是1,这样的方程叫做一元一次方程.

例如方程2x-3=3x+1,-3=2y等都是一元一次方程,而x+y=5,x2+3x=2都不是一元一次方程.

以上分析过程可归纳为:

分析问题中的数量关系──设未知数x──用含x的式子表示实际问题中的数量关系──找出相等关系,利用相等关系列出方程(一元一次方程).

列方程是解决实际问题的一种重要方法,利用方程可以解出未知数.

观察方程4x=24,不难发现,当x=6时,4x的值是24,这时方程等号左右两边相等,x=6叫做方程4x=24的解,这就是说,方程4x=24中未知数x的值应是6.

从方程1700+150x=2450,你能估算出x的值吗?

这里x是正整数,如果x=1,那么方程左边=1700+150×1=1850≠右边

所以x≠1.

如果x=2,则方程左边=1700+150×2=2000≠右边,

所以x≠2.

类似地,我们可以列出下面的表.