思考:你能由平面向量的坐标运算类比得到空间向量的坐标运算吗?它们是否成立?为什么?
二、新授:
(一)空间向量的正交分解
(1)单位正交基底:i,j,k是空间三个方向的单位向量,而且两两垂直,则{i,j,k}就叫做单位正交基底。
(2)空间向量的基本定理:如果三个向量a,b,c不共面,那么对空间任一向量p,存在有序实数组{i,j,k},使得p= xi+yj+zk
(二)空间向量运算的坐标表示:
设,则
(1)
(2)即
(3)
(二)应用举例
例1已知向量 ,若 ,则 ______;
若 则 ______.