2017-2018学年北师大版必修一  函数的单调性 学案
2017-2018学年北师大版必修一      函数的单调性    学案第3页

  即当x=x0时,f(x0)是函数y=f(x)的最大值,记作ymax=f(x0).

  2.函数最小值的概念

  一般地,对于函数y=f(x),其定义域为D,如果存在x0∈D,f(x0)=M,使得对于任意的x∈D,都有f(x)≥M,那么,我们称M是函数y=f(x)的最小值,即当x=x0时,f(x0)是函数y=f(x)的最小值,记作ymin=f(x0).

  

   函数f(x)在[-2,2]上的图像如图2­3­2所示,则此函数的最小值、最大值分别是(  )

  

  图2­3­2

  A.f(-2),0      B.0,2

  C.f(-2),2 D.f(2),2

  【解析】 由函数最大、最小值概念知,C正确.

  【答案】 C

  [小组合作型]

用定义判断或证明函数的单调性    证明函数f(x)=x+在(0,1)上为减函数.

  【精彩点拨】 在(0,1)上任取x1,x2且x1<x2,只需证明f(x1)>f(x2).

  【尝试解答】  证明:设0<x1<x2<1,则

  f(x1)-f(x2)=-

=(x1-x2)+