【解析】按照斜二测画法的作图规则,对四个选项逐一验证,可知只有选项A符合题意.
【点拨】本题已知直观图,探求原平面图形,考查逆向思维能力.要熟悉运用斜二测画法画水平放置的直观图的基本规则,注意直观图中的线段、角与原图中的对应线段、角的关系.
【变式训练2】已知△ABC的平面直观图△A′B′C′是边长为a的正三角形,求原三角形的面积.
【解析】因为直观图的坐标轴成45°,横长不变,竖长画成原来的一半,则还原成原图时将45°还原成90°,则过A′作A′O′与O′C′成45°,将其还原成90°,且AO=2A′O′.
而A′D′=a.所以A′O′=a×=a,所以AO=a.
所以S△ABC=BC· AO=a×a=a2.
题型三 三视图与直观图
【例3】 四棱柱ABCD-A1B1C1D1的三视图如下.
(1)求出该四棱柱的表面积;
(2)求证:D1C⊥AC1;
(3)设E是DC上一点,试确定E的位置,使D1E∥平面A1BD,并说明理由.
【解析】(1)求得该四棱柱的表面积为S=11+2.
(2)证明:由三视图得该四棱柱为直四棱柱且底面为直角梯形.
在直四棱柱ABCD-A1B1C1D1中,连接C1D.
因为DC=DD1,所以四边形DCC1D1是正方形.
所以DC1⊥D1C.
又AD⊥DC,AD⊥DD1,DC∩DD1=D,
所以AD⊥平面DCC1D1.
又D1C⊂平面DCC1D1,所以AD⊥D1C.
因为AD,DC1⊂平面ADC1,且AD∩DC1=D,
所以D1C⊥平面ADC1.
又AC1⊂平面ADC1,所以D1C⊥AC1.
(3)连接AD1,AE,设AD1∩A1D=M,
BD∩AE=N,连接MN.