2019-2020学年苏教版选修2-2  函数的单调性与导数 教案
2019-2020学年苏教版选修2-2      函数的单调性与导数  教案第1页

2019-2020学年苏教版选修2-2  函数的单调性与导数 教案

【教学重点】:

  利用导数判断函数单调性,会求不超过三次的多项式函数的单调区间

【教学过程设计】:

教学环节 教学活动 设计意图 情景引入过程

从高台跳水运动员的高度h随时间t变化的函数:

分析运动动员的运动过程:

上升→最高点→下降

运动员瞬时速度变换过程:

减速→0→加速 从实际问题中物理量入手

学生容易接受 实际意义向函数意义过渡 从函数的角度分析上述过程:

先增后减

由正数减小到0,再由0减小到负数 将实际的量与函数及其导数意义联系起来,过渡自然,突破理解障碍 引出函数单调性与导数正负的关系 通过上述实际例子的分析,联想观察其他函数的单调性与其导数正负的关系

解:各函数的图象大概如下:

(1)

(2)

  

(3)

(4)

  

  如图,导数表示函数在点处的

切线的斜率.

  在处,,切线是"左下右上"式的,

这时,函数在附近单调递增;

  在处,,切线是"左上右下"式的,

这时,函数在附近单调递减. 进一步的函数单调性与导数正负验证,加深两者之间的关系