(2)如果以的把握作出推断,那么可以根据与(是样本容量)在附录(教材P111)中查出一个的临界值(其中称为检验水平);(3)计算样本相关系数;(4)作出统计推断:若,则否定,表明有的把握认为变量与之间具有线性相关关系;若,则没有理由拒绝,即就目前数据而言,没有充分理由认为变量与之间具有线性相关关系。
说明:1、对相关系数进行显著性检验,一般取检验水平,即可靠程度为.
2、这里的指的是线性相关系数,的绝对值很小,只是说明线性相关程度低,不一定不相关,可能是非线性相关的某种关系.3.这里的是对抽样数据而言的.有时即使,两者也不一定是线性相关的.故在统计分析时,不能就数据论数据,要结合实际情况进行合理解释.4.对于上节课的例1,可按下面的过程进行检验:(1)作统计假设:与不具有线性相关关系;(2)由检验水平与在附录中查得;(3)根据公式得相关系数;(4)因为,即,所以有﹪的把握认为与之间具有线性相关关系,线性回归方程为是有意义的。
(四)、数学运用
1、例题:
例1、下表是随机抽取的对母女的身高数据,试根据这些数据探讨与之间的关系.
母亲身高 女儿身高 解:所给数据的散点图如图所示:由图可以看出,这些点在一条直线附近,