=sin 240°=sin(180°+60°)=-sin 60°=-.
方法二 sin 1 320°=sin(4×360°-120°)=sin(-120°)
=-sin(180°-60°)=-sin 60°=-.
(2)方法一 cos=cos=cos
=cos(π+)=-cos=-.
方法二 cos=cos
=cos=-cos=-.
(3)tan(-945°)=-tan 945°=-tan(225°+2×360°)
=-tan 225°=-tan(180°+45°)=-tan 45°=-1.
题型二 化简求值问题
【例2】 (1)计算:cos+cos+cos+cos+cos+cos=________;
解析 原式=cos+cos+cos+cos(π-)+cos(π-)+cos(π-)=cos+cos+cos-cos-cos-cos=0.
答案 0
(2)化简:.
解 原式==·=1.
规律方法 三角函数式化简的常用方法
(1)合理转化:①将角化成2kπ±α,π±α,k∈Z的形式.
②依据所给式子合理选用诱导公式将所给角的三角函数转化为角α的三角函数.
(2)切化弦:一般需将表达式中的切函数转化为弦函数.
【训练2】 化简下列各式:
(1);